【高校数学】”商の導関数”の公式とその証明

数学

エンジニア兼研究者のnavy engineerです.
普段は半導体関係の研究をしています♪
研究のかたわら,Web制作や勉強したことをブログに書いてます.
このブログでわからないことが少しでもわかっていただけたら嬉しいです!

navy engineerをフォローする

“商の導関数”の公式とその証明です!

スポンサーリンク
スポンサーリンク

商の導関数

公式

商の導関数

\(・\{\frac{1}{g(x)}\}’=-\frac{g'(x)}{\{g(x)\}^2}\)
\(・\{\frac{f(x)}{g(x)}\}’=\frac{f'(x)g(x)-f(x)g'(x)}{\{g(x)\}^2}\)

証明

\(\{\frac{1}{g(x)}\}’=-\frac{g'(x)}{\{g(x)\}^2}\) の証明

証明
\(\{\frac{1}{g(x)}\}’\)
\(=\displaystyle\lim_{h→0}\frac{1}{h}\{\frac{1}{g(x+h)}-\frac{1}{g(x)}\}\)
\(=\displaystyle\lim_{h→0}\frac{1}{h}\frac{-g(x)+g(x+h)}{\{g(x+h)g(x)}\)
\(=\displaystyle\lim_{h→0}\frac{g(x+h)-g(x)}{h}\frac{-1}{g(x+h)g(x)}\)
\(=-\frac{g'(x)}{\{g(x)\}^2}\)
よって
\(\{\frac{1}{g(x)}\}’=-\frac{g'(x)}{\{g(x)\}^2}\)


\(\{\frac{f(x)}{g(x)}\}’=\frac{f'(x)g(x)-f(x)g'(x)}{\{g(x)\}^2}\)の証明

証明
\(\{\frac{f(x)}{g(x)}\}’\)
\(=\{f(x)\frac{1}{g(x)}\}’\)
積の導関数より
\(=f'(x)\frac{1}{g(x)}+f(x)\{\frac{1}{g(x)}\}’\)
\(=\frac{f'(x)g(x)}{\{g(x)\}^2}-\frac{f(x)g'(x)}{\{g(x)\}^2}\)
\(=\frac{f'(x)g(x)-f(x)g'(x)}{\{g(x)\}^2}\)
よって
\(\{\frac{f(x)}{g(x)}\}’=\frac{f'(x)g(x)-f(x)g'(x)}{\{g(x)\}^2}\)

まとめ記事に戻る

タイトルとURLをコピーしました