ADC (Analog to Digital Converter,A/D変換器) はアナログ信号をデジタル信号に変換する電子回路です. 本記事ではイメージセンサにおける基本的なADCの構造について解説していきます.
ADC (Analog to Digital Converter)とは
ADC (Analog to Digital Converter,A/D変換器) はアナログ信号をデジタル信号に変換する電子回路です.現在のほとんどのイメージセンサの出力は,コンピュータで扱うことのできるデジタル信号です.しかしイメージセンサのPD (Photo Diode)の出力はアナログ信号であるため,このアナログ信号をADCでデジタル信号に変換します.
イメージセンサのADCの基本構造は以下で解説しますが,直接ADC,カラムADC,画素並列ADCがあります.
ADCの基本構造
直列ADC
直列ADCは図1のようにイメージセンサの読出し回路の後段にADCがあり,一つあるいは数個のADCでイメージセンサの画素すべてのアナログ信号を順次,デジタル信号に変換していきます.
この方式では構造が簡単でADCの数を少なくでき,同じADCを共有できるためADCのばらつきの影響をなくすことができます.しかしより多くの画素を変換しなければならないため,フレームレートを高くしずらいです.またADCを高速に動作させなければならないため,現在では画素数が少ないイメージセンサなどで限定的に使用されます.
カラムADC
カラムADCでは図2のように,ADCが各カラム (列)毎にあります.この方式では一行分の画素を同時にデジタル信号へ変換します.
そのため,多画素でも高速に変換できるため多く使われています.また直列ADCと比べてより早い段階でデジタル信号に変換できるため,一部のノイズをより小さくすることができます.
画素並列ADC
画素並列ADCは図3のように各画素にADCを搭載する方式です.画素並列ADCでは画素毎にADCがあるため高速かつ,読出し回路によるノイズを低減できる特徴があります.
しかし各画素にADCがあるため画素が大きくなり,またPD (Photo Diode)の占める割合が下がり感度が落ちるといった欠点がありました.しかしながら,裏面照射 (BSI)や積層構造といった技術により,これらの欠点を克服した構造が出てきています.
まとめ
- ADC (Analog to Digital Converter):アナログ信号をデジタル信号に変換する電子回路
- 直列ADC:読出し回路の後段にあるADCで,各画素のアナログ信号を順次デジタル信号に変換する方式
- カラムADC:各カラムにあるADCでアナログ信号をデジタル信号に変換する方式
- 画素並列ADC:各画素にあるADCでアナログ信号をデジタル信号に変換する方式